Partial Hyperbolicity and Specification

نویسندگان

  • NAOYA SUMI
  • PAULO VARANDAS
چکیده

We study the specification property for partially hyperbolic dynamical systems. In particular, we show that if a partially hyperbolic diffeomorphism has two saddles with different indices, and the stable manifold of one of these saddles coincides with the strongly stable leaf, then it does not satisfy the specification property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Work of Dolgopyat on Partial and Nonuniform Hyperbolicity

The paper is a non-technical survey and is aimed to illustrate Dolgopyat’s profound contributions to smooth ergodic theory. I will discuss some of Dolgopyat’s work on partial hyperbolicity and nonuniform hyperbolicity with emphasis on interaction between the two – the class of dynamical systems with mixed hyperbolicity. On the one hand, this includes uniformly partially hyperbolic diffeomorphis...

متن کامل

ar X iv : m at h . D S / 06 01 70 1 v 1 28 J an 2 00 6 HYPERBOLICITY VERSUS PARTIAL - HYPERBOLICITY AND THE TRANSVERSALITY - TORSION PHENOMENON

— In this paper, we describe a process to create hyperbolicity in the neighbourhood of a homoclinic orbit to a partially hyperbolic torus for three degrees of freedom Hamiltonian systems: the transversality-torsion phenomenon. keywords: Hyperbolicity, Partially hyperbolic tori, Hamiltonian systems.

متن کامل

Ja n 20 06 HYPERBOLICITY VERSUS PARTIAL - HYPERBOLICITY AND THE TRANSVERSALITY - TORSION PHENOMENON

— In this paper, we describe a process to create hyperbolicity in the neighbourhood of a homoclinic orbit to a partially hyperbolic torus for three degrees of freedom Hamiltonian systems: the transversality-torsion phenomenon. keywords: Hyperbolicity, Partially hyperbolic tori, Hamiltonian systems.

متن کامل

Hyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3})$

The aim of this paper is to present a proof of the hyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3}), |c|>3$, on an its invariant subset of $mathbb{R}$.

متن کامل

Shadowing by Non Uniformly Hyperbolic Periodic Points and Uniform Hyperbolicity

We prove that, under a mild condition on the hyperbolicity of its periodic points, a map g which is topologically conjugated to a hyperbolic map (respectively, an expanding map) is also a hyperbolic map (respectively, an expanding map). In particular, this result gives a partial positive answer for a question done by A. Katok, in a related context.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015